Brownian Motion and Ito Calculus

نویسنده

  • K Ito
چکیده

K Ito s stochastic calculus is a collection of tools which permit us to perform opera tions such as composition integration and di erentiation on functions of Brownian paths and more general random functions known as Ito processes As we shall see Ito calcu lus and Ito processes are extremely useful in the formulation of nancial risk management techniques These notes are intended to introduce the reader to stochastic calculus in a straightforward intuitive way For rigorous treatments of this rich subject the reader can consult for instance Ikeda and Watanabe North Holland Kodansha Varadhan Karatzas and Shreve Springer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Stochastic Analysis of the Fractional BrownianMotionBy

Since the fractional Brownian motion is not a semiimartingale, the usual Ito calculus cannot be used to deene a full stochastic calculus. However, in this work, we obtain the Itt formula, the ItttClark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.

متن کامل

Multidimensional bifractional Brownian motion: Ito and Tanaka formulas

Using the Malliavin calculus with respect to Gaussian processes and the multiple stochastic integrals we derive Itô’s and Tanaka’s formulas for the d-dimensional bifractional Brownian motion. 2000 AMS Classification Numbers: 60G12, 60G15, 60H05, 60H07.

متن کامل

Stochastic Analysis of the Fractional Brownian Motion

Since the fractional Brownian motion is not a semi–martingale, the usual Ito calculus cannot be used to define a full stochastic calculus. However, in this work, we obtain the Itô formula, the Itô–Clark representation formula and the Girsanov theorem for the functionals of a fractional Brownian motion using the stochastic calculus of variations.

متن کامل

Ito formula for the infinite dimensional fractional Brownian motion

We introduce the stochastic integration with respect to the infinite-dimensional fractional Brownian motion. Using the techniques of the anticipating stochastic calculus, we derive an Itô formula for Hurst parameter bigger than 1 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004